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Abstract

During the COVID-19 pandemic, several forecasting models were released to predict the spread
of the virus along variables vital for public health policymaking. Of these, the Susceptible-Infected-
Recovered (SIR) compartmental model was the most common. In this paper, we investigate the
forecasting performance of The University of Texas COVID-19 Modeling Consortium SIR model.
We consider the following daily outcomes: hospitalizations, ICU patients and deaths. We evaluate
the overall forecasting performance, highlight some stark forecast biases, and consider forecast
errors conditional on different pandemic regimes. We find that this model tends to over forecast

over the longer horizons and when there is a surge in viral spread. We bolster these findings by
linking them to faults with the SIR framework itself.
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1. Introduction

Forecasts of the spread of COVID-19 in the United States and across the world have played

a significant role in informing policymakers. Employing different mathematical approaches, these

forecasting models provide predictions that inform critical decisions such as healthcare administration,

allocation of medical supplies, and business and school closures. Some models even attempted to

estimate the impact of current and future policies on human behavior and COVID-19 transmission

(Cramer et al., 2022).

For the Austin-Round Rock metropolitan statistical area, forecasts given by The University of

Texas (UT) COVID-19 Modeling Consortium shaped COVID-19 policies to a significant extent such

as the introduction of staged lock downs. These had serious repercussions on the overall economy,

spanning the closure of small businesses to setbacks in K-12 students due to hybrid or online education.

Statewide, Texas is estimated to have suffered a GDP loss of $106 million and job losses of 1.2 million

(Liu et al., 2021). Texas also suffered unprecedented setbacks in student achievement in reading and

mathematics due to the mass transition to remote learning. The Texas Education Agency cites a

roughly 3-month setback in educational attainment relative to a pre-COVID baseline. From 2019 to

2021, the percentage of Texas students performing at or above their grade level in math dropped from

50% to 35% (Texas Education Agency, 2021). While we have moved on from such strict measures

for now, some questions remain unanswered. Did we base these policies on well-sourced data? In the

future, can we still rely on these forecasting models to aid our decision-making?

Research from the US COVID-19 Forecast Hub (Cramer et al., 2022) demonstrated that stand-

alone models tend to generate large prediction errors, especially when forecasting over a long time

horizon. The UT COVID-19 Modeling Consortium model is one such example. Given its impact on

COVID-19 policymaking, this paper investigates the UT model’s forecasting performance in light of

realized data, discovers that forecast errors are biased, predictable, and depend on pandemic regime,

and proposes paths forward and alternative approaches. The forecasts considered are for the Austin-

Round Rock metropolitan statistical area.

2. Sorting COVID-19 into boxes: SIR Models

Most researchers adopted the Susceptible-Infected-Recovered (SIR) model and its modifications

to forecast COVID-19 metrics due to its simplicity and prevalence among academics and training

of epidemiologists (Rahimi et al., 2021). The SIR modeling framework falls under the category of

compartmental models which date back to the seminal work of Ross (1916).

In these models, individuals within a closed population are separated into mutually exclusive

groups, or compartments, based on their disease status. At any given time, each individual is consid-

ered to be in one compartment, but can move to another compartment based on the model parameters.

As per the model’s assumptions, a susceptible individual will become infected by coming into contact

with an infected individual. The individual during the infected period is assumed to be contagious.
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After this, the individual advances to a non-contagious state, known as recovery. Recovery may also

be death or effective isolation (Tolles and Luong, 2020).

The classical SIR model is based on the following set of differential equations:

∂S

∂t
= −βIS, (1)

∂I

∂t
= βIS − γI, (2)

∂R

∂t
= γI, (3)

where at time t, S is the fraction of individuals susceptible, I is the fraction of individuals infected,

R is the fraction of individuals recovered and β and γ are the rate of transmission and recovery,

respectively. Equation 1 models the fraction of people would be susceptible to the virus at a certain

point, given rate of transmission and infected individuals. Equation 2 models the instantaneous

fraction of infected people, using susceptible individuals and rate of recovery. Equation 3 models the

instantaneous fraction of recovered individuals using the rate of recovery.

Modified SIR models, such as Susceptible-Exposed-Infected-Recovered (SEIR), require a more

complex set of equations and set of parameters. Due to the presence of little information and lack

of reliable data at the beginning of the COVID-19 pandemic, many researchers relied on the classical

SIR implementation (Moein et al., 2021). Nonetheless, the set up for this modified model formulation

is as follows (Moehlis, 2002). The entire population is divided into the following groups:

• S is the fraction of susceptible individuals who are able to contract the disease,

• E is the fraction of exposed individuals who have been infected but are not yet infectious,

• I is the fraction of infectious individuals who can transmit the disease,

• R is the fraction of recovered individuals who have become immune.

Here, we assume that there are equal birth and death rates µ, α is the mean latency period

for the virus, γ is the mean infectious period, the contact rate β(t) may optionally be a function of

time, and recovered individuals do not contract the disease again. This admits the following set of

equations:
∂S

∂t
= µ− β(t)IS − µS,

∂E

∂t
= β(t)IS − (µ+ α)E,

∂I

∂t
= αE − (µ+ γ)I,

Since each variable is defined as a fraction of the entire population, we calculate R from the equation

S + E + I +R = 1.
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Additionally, when β = β0 = constant, i.e., not a function of time, the reproduction rate is

given by

R0 =
β0α

(µ+ α)(µ+ γ)
.

Example: Compartmental model use in China. In China, the initial spread of the virus coin-

cided with a travel rush that comes with the Spring Festival. Yang et al. (2020) accounted for this

using a modified SIR model based on domestic migration before and after 23 January and most recent

COVID-19 epidemiological data to predict the epidemic progression. They corroborated their fore-

casts using a Long-Short-Term Model, a type of recurrent neural network trained on the 2003 SARS

coronavirus outbreak data used to predict numbers of new infections over time.

To apply the SIR model, they needed to estimate β, σ and γ parameters. β is the product of

(k) people exposed each day to infected people and (b) probability of transmission after exposure. σ

is the incubation rate or the rate at which exposed individuals develop symptoms (average incubation

duration is 1/σ). Since the incubation period of the SARS-CoV-2 had been reported between 2 to 14

days, they chose 7 days to be at the midpoint. γ is the average rate of recovery or death in infected

populations. They estimated the SIR model on epidemic data from Hubei to determine (b) probability

of transmission and then derived β and γ.

3. COVID-19 Forecasting in the United States: IHME and UT Austin

The Institute for Health Metrics and Evaluation (IHME) COVID-19 Forecasting Team located

at the University of Washington created multiple models over the course of the pandemic. The initial

model garnered much press and attention and used statistical curve-fitting to estimate hospital bed

utilization, ICU admissions, ventilator use, and deaths from 25 March 2020 to 29 April 2020 (IHME

COVID-19 Health Service Utilization Forecasting Team and Murray, Christopher JL, 2020).

In this model, the IHME team took a different approach to model death rates compared with

the classical compartmental framework. They critiqued SEIR models for their assumption of random

mixing between all individuals in the population because under that assumption, millions of COVID-

19-related deaths were predicted very early in the United States. Random mixing does not account

for behavioral changes and government-mandated social distancing measures. Instead, the IHME

team modelled actual COVID-19 death rates since they would indicate virus transmission and fatality

rates. According to the authors, deaths were also more accurately reported than cases, especially in

limited testing areas as those would allocate tests for severely ill patients first. They also assumed

hospitalization and related services to be highly correlated with deaths.

Their next model took on a hybrid approach, estimating revised death rates and then fitting

an SEIR model until 26 May 2020 (IHME, 2020b; Friedman et al., 2021).The third model replaced

curve-fitting with spline-fitting for the relationship between log cumulative deaths and log cumulative

cases, while retaining the SEIR model estimation (IHME, 2020a; Friedman et al., 2021). When tested

against other forecasting models for predictive accuracy, this third IHME model possessed the best

performance (out of 7 models) (Friedman et al., 2021).
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3.1. What is unique about the UT Model?

The UT COVID-19 Modeling Consortium developed a highly-publicized and widely-used model

to predict trends in key pandemic variables, including hospitalizations and ICU patients, in the Austin-

Round Rock metropolitan statistical area (Spencer Woody et al., 2020).1

Motivated by the IHME approach, the UT Model developed an alternative curve-fitting method

for forecasting COVID-19 mortality. It incorporated two unique features:

1. Mobile-phone data to capture social distancing measures: To capture the effect of changing social

distancing measures for each US state on individual-level mobility, the model used local data

from mobile-phone GPS traces from SafeGraph.2

2. A correction for the underestimation of uncertainty in the IHME forecasts: The IHME model

estimated cumulative death rates using a least-squares-like procedure on the log scale and calcu-

lated confidence intervals based on large-sample statistical theory. For this method to produce

valid uncertainty measures, consecutive model errors should be independent of each other. How-

ever, this assumption is violated in the IHME fitting procedure as today’s cumulative death rate

includes yesterday’s death rate and an increment. This implies that these two death rates must

be correlated. The UT model corrected this by fitting daily death rates using a mixed-effects

negative-binomial generalized linear model, accounting for heteroskedasticity and correlation.

But the UT model’s forecasts still generated large prediction errors. We analyze the UT fore-

casting model for hospitalizations, ICU patients, and deaths by following these steps:

1. Visualize forecasts against realized data: We plot realized data with forecasts generated by the

UT model. While we have daily realized data on hospitalizations, ICU patients, and deaths,

we do not have the same for forecasts as the model was not updated daily and had a different

schedule for each parameter.

2. Map forecasting errors from 1 to 20 days ahead : We compute the forecasting errors out to 20

days ahead, showing the median forecasting error and inter quartile range (IQR) of the error

distribution.

3. Map forecasting errors, conditional upon whether the virus is spreading or waning : We compute

the forecasting errors from 1 to 20 days out, conditional upon whether there is a surge in the

viral spread.

For each parameter of interest, we define rising hospitalizations/ICU patients/deaths as surging

and falling hospitalizations/ICU patients/deaths as waning. To smooth out noise in the realized

data, we take a 14-day moving average of the realized data and then compute the percent change

1We can access all forecast commits. since spring of 2020 on their GitHub directory. These forecasts are also visually

available to the public on their website.
2More information on SafeGraph can be found here.
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in the moving averages. Our final definition of a rising (falling) regime is a day that has a 14-day

average percent change of greater (less) than zero.

We first focus on daily COVID-19 hospitalizations. Figure 1 displays the raw data. The realized

data in black is daily and starts on February 19, 2020 and ends on April 1, 2022. The forecasts in

red start on August 1, 2020 and end on April 1, 2022. Although we do have daily realized data, the

model was not updated daily. Instead, there are 246 forecast dates, denoted as “commit dates” in the

plot and shown in blue. These are dates when the entire model with new forecasts is updated, i.e.,

when each of the red forecasts begin.
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Figure 1. Visualizations of the raw data for hospitalizations, ICU patients, and deaths. The realized data is
displayed in black, the forecasts are given in red, and the commit dates (the points at which the forecasts are
created) are given in blue along the realized path.

As a first step, we compute the forecasting errors out to 20 days ahead and display them in

Figure 2. The median forecasting error is shown in black and the inter quartile range (IQR) of the

error distribution is the shaded region. An immediately visible feature is upward bias of the error

distribution, even via the median error which is robust to egregiously large forecasts. This implies

that the model systematically over forecasts hospitalizations.
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Figure 2. Forecasting errors from 1 to 20 days ahead. The median forecast error for each period ahead is
displayed by the black line, and 25th to 75th quantiles of the error distribution are represented by the gray
region.

We next consider visualizing the errors conditional on different stages of the pandemic. Our

goal is to answer the question: Does the model systematically over or under forecast when the virus

is spreading more rapidly or is receding? In other words, is the model more likely to make forecasting

errors during variant surges or when the viral spread is waning? To answer this question, we define

rising hospitalizations as surging and falling hospitalizations as waning. To smooth out noise in the

realized data, we compute the percent change in the realized hospitalizations and smooth with a 14-

day rolling window. Our final definition of a rising (falling) regime is a day that has a 14-day average

percent change of greater (less) than zero.

The regimes as defined above are displayed in Figure 3. The forecast errors conditional on these

regimes (analogous to Figure 2) are displayed in Figures 4 (rising) and 5 (falling). When looking at

these figures, an interesting feature emerges. The model makes large positive mistakes during surges

(and with larger variance, Figure 4) compared to when the viral spread is waning (Figure 5) and

hospitalizations are falling.
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Figure 3. The realized data with “rising” and “falling” regimes overlayed in green and blue, respectively.
“Rising” is defined as a day when the 14-day moving average percent change in hospitalizations exceeds zero.
“Falling” is defined as a day when the 14-day moving average percent change in hospitalizations is below zero.
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Figure 4. Forecasting errors from 1 to 20 days ahead, conditional upon forecasting in a rising regime.
The median forecast error for each period ahead is displayed by the bold line, and 25th to 75th quantiles of
the error distribution are represented by the shaded region.
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Figure 5. Forecasting errors from 1 to 20 days ahead, forecasting in a falling regime. The median
forecast error for each period ahead is displayed by the bold line, and 25th to 75th quantiles of the error
distribution are represented by the shaded region.

We now investigate the number of ICU patients and its corresponding forecasts. Figure 1 dis-

plays the raw data versus the forecasts at each commmit date. Similar to our work on hospitalizations,

we calculate the forecasting error up to 20 days ahead as seen in Figure 2. There is a clear upward bias,

especially for predictions generated 15 to 20 days ahead. This implies again the model systematically

over forecasts the number of ICU patients.

We map the errors to the rising and falling regimes defined by the realized ICU admission data.

As defined in Section 3.1, rising ICU admissions corresponds to a surge in the viral spread, and falling

ICU admissions denote waning viral spread. Figure 3 visualizes these rising and falling regimes given

the realized. We see a distinct trend emerge in the rising regime. Errors in the model are larger and

more positive when the virus spread is surging compared to when the ICU admissions are falling.

Lastly, we look at the daily COVID-19 deaths. Figure 1 shows the model’s forecasts (in red),

along with the actual values (in black). This is similar to the plots shown above for hospitalizations

and ICU admissions, where the realized values are daily though aperiodic, and the forecasts lines start

on their respective commit date.

In Figure 2, we show the forecasting errors of the model computed with forecasts up to 20 days

ahead. Similar to the previous error plots, the black line shows the median forecasting error, while

the IQR is shaded in gray. Interestingly, deaths exhibit a weakerupward bias than with ICU and

hospitalization errors.

Once again, we show the realized data during the “rising” and “falling” regimes in Figure 3. To

see if the model has different forecasting errors during a “rising” regime or a “falling” one, we plot the
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errors conditional upon the regime when these values were forecast.

Figure 4 shows the model’s errors during a “rising” regime, whereas Figure 5 shows the model’s

errors during a “falling” regime. Unlike with hospitalisation and ICU forecasts, the error is similar

and more attentuated in both regimes.

4. Larger issues with the SIR model design

The SIR model fails to properly model certain aspects of disease spread. Melikechi et al.

(2022) pointed out that over the last century, many have modified the SIR model to incorporate

different compartments for various subpopulations or added new terms that identify unique pathogen

transmissions. However, adding too many features may lead to overfitting when making inferences of

parameters early on in an epidemic. At the beginning of an epidemic or pandemic, there is a risk of

noisy observations. Melikechi et al. (2022) raise the concept of practical identifiability which refers

to the ability to “discern different parameter values based on noisy observations”. Most SIR models

employ Monte Carlo simulations, where the model is simulated with pre-determined parameters. Noise

is added to the simulated data and then, a fitting procedure is used on the noisy data. With increase

in the magnitude of noise, Monte Carlo parameter estimates often display large difference in values,

leading to huge uncertainty in the parameters and unreliable inferences.

Lemoine (2021) dissected missteps of a popular SEIR model built by Flaxman et al. (2020),

in which they analyzed the effect of non-pharmaceutical interventions on deaths due to the virus.

Flaxman et al. (2020) used partial pooling of information between countries, with both individual

and shared effects on the time-varying reproduction number. According to them, pooling allowed for

more information to be used and helped overcome country-specific idiosyncrasies in the data to enable

more-timely estimates. The authors argued that government lockdowns were the interventions that

made a bulk of the impact on controlling the viral spread. Lemoine, however, pointed out that the

overall effect of government interventions on deaths in Sweden was similar to that in other countries.

Why is this important? Sweden was the one country in the analysis that did not have a full lockdown.

When he reproduced their analysis, Lemoine found that the country-specific effect for Sweden that

the model ignored was almost as large as the effect of a full lockdown, a feature that the authors

failed to present in their findings. Based on this, Lemoine argued that such SIR models have been

unable to deliver useful inputs for policymakers. But more importantly, epidemiologists have failed to

acknowledge this fact, by not ascribing the failure of their models to the right causes.

There are three major critiques for the SIR models: assumption of homogeneous mixing, as-

sumption of closed population, and latency period of infection.

4.1. Homogeneous mixing

SIR models assume random mixing between all individuals in a given population. Based on this

assumption, each individual has the same amount of contact as everyone else. Such a model would

not be able to account for a higher contact rate at hospitals or lower contact rate for quarantined
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individuals (Meyers and Dimitrov, 2010). There is a lack of adequate inclusion of individual behavioral

and social influence in SIR models. Infectious disease epidemics have a substantial social aspect and

public health implication. Homogeneous mixing assumes an equal probability of transmission between

two people regardless of their age or location (Del Valle et al., 2013). This can fail to take into account

age-dependent or location-dependent risk. We need to include varying degrees of interventions such

as social distancing, stay-at-home, and shelter-in-place orders at different times and across different

regions. The assumption of homogeneous mixing of S with I state individuals in the SIR model is

therefore invalid during COVID-19.

This flaw of SIR models may explain why the errors tend to be so high with the UT Austin model.

While homogeneous mixing can be helpful for projecting the number of cases, it can lead to large errors

both in the early stages of the epidemic and in calculating the final epidemic size (Del Valle et al., 2013).

Homogeneous mixing often overestimates the epidemic’s size, and can lead to more interventions than

needed. While the UT model accounts for different age groups and risk factors, it still models disease

transmission through an SIR framework where the base assumption remains homogeneous mixing.

That is, all individuals within each group would have the same susceptibility to infection, and all

individuals within each infection status compartment would have the same infectiousness.

Even with more spatially explicit meta-population models, homogeneous mixing at smaller

scales such as within a state, county, or city level is still questionable, as some people can stay home

and some are essential. In addition, the regional variability of individual sentiment and behavior, for

example, whether to obey or enforce these orders, is essential to determine in order to predict the

trajectory of the COVID-19 pandemic, but is generally not included in the SIR models (Chen et al.,

2020).

Assumption of homogeneous mixing can lead to overestimating health service needs by not ac-

counting for behavioral changes and government-mandated actions. In Wuhan, strict social distancing

was instituted on January 23, 2020, and by the time new infections reached 1 or fewer a day (March

15, 2020), less than 0.5% of the population was infected. At the time, SIR models generally suggested

that 25% to 70% of the population to be infected. (IHME COVID-19 Health Service Utilization

Forecasting Team and Murray, Christopher JL, 2020).

Since most SIR models consider a single R0 value, they miss unexpected social behavior changes

and are unable to follow the alterations. For instance, social gatherings have a great impact on disease

spread. A religious event in Malaysia, held from February 27 to March 3, was supposed to be the

source of viral spread in India and Pakistan (Moein et al., 2021; Dimitrov and Meyers, 2010).

Chen et al. (2020) argue that since SIR models are formulated at the population level, we face

an important discrepancy between patient-level data and population-level modeling. Exposed (E ) and

infectious (I ) compartments characterize the disease spread at the population level, ignoring individual

clinical variations in patients. Due to its broadness, the E compartment assumes everyone exposed

is unable to infect others, and the I compartment does not account for varying levels of severity

among patients such as asymptomatic, mild, and severe stages. Given these assumptions, SIR models

cannot pin down and quantify the impact of super-spreaders who can lead to a disproportionately
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large number of new cases. Super-spreading can be due to individual clinical characteristics such as

super-shedding of virus or behavioral aspects like super-contacting. Neither are addressed well by

SIR models built at a population level. This flaw in the SIR models may also explain some of the

inaccuracy in the UT model, as not accounting for patient-level differences may cause them to overlook

individual behaviors and over forecast.

4.2. Closed population

The focus of SIR models is often placed on the estimation of the basic reproduction number

R0 (Katul et al., 2020). But what should be addressed is the assumption of a closed population in

SIR models. Most regions do not follow complete isolation, making them vulnerable to changes in

the neighboring communities. SIR models also consider recovered individuals to be immunized. This

assumption contrasts with the possibility of the reactivation of the virus or reinfection of previously

infected individuals (Moein et al., 2021). Similarly, it does not account for asymptomatic individuals.

With the closed population assumption, Ding et al. (2021) argue that standard SIR models miss out

on the fact that pre-symptomatic and asymptomatic cases can spread the disease between populations

through travel. Researchers have addressed this at multiple levels: within state, country, and even

globally.

Studies such as Kucharski et al. (2020) and Wu et al. (2020) estimated cases in Wuhan, China

by accounting for people moving in and out of the city. Kucharski et al. (2020) did so by assuming that

once exposed, a part of the population would travel internationally. To account for international trav-

ellers, they used the number of outbound travellers (assuming 3,300 per day before travel restrictions

were imposed on 23 January 2023, and zero after), relative connectivity of different countries, relative

probability of reporting a case outside Wuhan and reporting within Wuhan and internationally.

Wu et al. (2020) first inferred the R0, basic reproduction rate of the virus, of COVID-19 and

outbreak size in Wuhan from 1 December 2019 to 25 January 2020, on the basis of confirmed cases ex-

ported from Wuhan to cities outside of mainland China, whose symptom onset date had been reported

to fall from 25 December 2019, to 19 January 2020. They also forecasted the spread of COVID-19

within and outside Mainland China, accounting for public health interventions and outbound travellers

by air, train, and road during the Spring Festival. While they assumed that travel behaviour was not

affected by disease and so, international case exportation occurred according to a non-homogeneous

process, their work still addresses mobility across cities and countries for modelling COVID-19.

Chinazzi et al. (2020) used a global epidemic and mobility model (GLEAM) to model the in-

ternational spread of COVID-19, for varying transmissibility and air traffic reductions. The model

uses a metapopulation network approach with real-world data, where the world is divided into sub-

populations centered around major transportation hubs such as airports. The sub-populations are con-

nected to each other by individuals traveling daily through them. COVID-19 transmission within each

sub-population is modelled through a susceptible-latent-infectious-recovered compartmental frame-

work.

Ding et al. (2021) differentiate their study by incorporating granular changes in air traffic and

11



simulate varying travel restrictions. They focus on data from Canada that showed, a large number

of flights going to and fro the country even with travel restrictions and decrease in air traffic. They

propose a modified SIR model that accounts for a dynamic flight network, by estimating imported

cases using air traffic volume and positive testing rate. Their model has an “open population setting”

where people are free to travel in and out of the population.

Not accounting for lack of closed population leads to poor estimation of forecasts. Depending

on the assumptions and circumstances of the model, this assumption can lead to both underestimation

and overestimation. For instance, Chowell and Nishiura (2014) show that in the case of the Ebola

virus, varying R0 numbers in an SEIR model were due to different assumptions of international or

domestic spread of the virus and lack of good quality data.

In our analysis of the UT Austin model, we captured the model’s systematic tendency to over

forecast. UT’s initial R0 values in 2020 were “best guesses” as seen in Wang et al. (2020). They

assumed R0 to be 2.2 but did not provide a clear source for how they came to this number.3 Tec et al.

(2020) estimate R0 using the basic infectiousness of the disease, number of people that are susceptible

to infection, and impact of social distancing, mask wearing and other measures to slow transmission.

Potentially, one of reasons why the UT model over forecasts is due to their social distancing data.

They used mobility trends from SafeGraph data and regressed the transmission rate of the virus on

the first two principal components from a principal component analysis (PCA) on eight independent

mobility variables, such as home dwell time and visits to universities, bars, grocery stores, museums

and parks, medical facilities, schools, and restaurants. If the PCA components did not appropriately

capture the variation in the mobility, such as inter-Austin movement, then the transmission rate would

lead to a poor estimation of the viral spread.

4.3. Latency period of infection

The SIR model also does not incorporate the latent period between when an individual is

exposed to a disease and when that individual becomes infected and contagious. This is because the

only categories in the model are susceptible, infectious, and recovered. The S(E)IR model tries to

accounts for this parameter by creating an category for people who are exposed but not yet contagious.

However, even S(E)IR models are oversimplified, and they will need to model other time-dependent

factors, such as the introduction of community mitigation strategies (Tolles and Luong, 2020).

Change in model parameters E, I or R at time t is dependent on a fraction of E and I at time t.

As per Liu (2021), this means that after being exposed to the virus on a particular day, an individual

may become contagious or recover on that same day. However in reality, an exposed individual will

become infectious only after a latent period and recover after an infectious period (Liu, 2021). This

timing issue with the compartmental models can cause the forecasts to be inaccurate, especially for

further days out.

Even SEIR models, which have the exposed category to model this latency period, may not be

doing so correctly for this reason. The latency period has to be set to the correct amount of time, or

3The authors linked a source, but it is not open access.
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the model may over/under forecast. A study using COVID-19 data in Tennessee found that “optimal”

latency period is 2.40 days, which is close to the mean latency period of 2.52 days which was estimated

from the data of seven countries (Patterson and Wang, 2022). If UT Austin’s SEIR model did not

correctly model this latency period, this could explain some of the model’s error.

5. Conclusion

Given the wide use of compartmental models to describe the transmission dynamics of COVID-

19 and other diseases, we must carefully consider their limitations when using them to inform public

health interventions. In particular, homogeneity assumptions underlying these models do not accu-

rately reflect heterogeneity of the population, and estimates of key parameters such as R0 are often

noisy and unreliable. Additionally, these models do not account for the impact of non-pharmaceutical

interventions on disease transmission or capture the complex interactions between the virus, people,

and the environment.

Historically, compartmental models were used as descriptive tools instead of real-time models for

prediction and decision-making. This change in “use-case” partially explains their significant failure.

Chen et al. (2020) point out that in the initial papers describing the SIR approach, the model was

applied after the epidemic had ended. But SIR models have little room for new evidence without

modifying the model structure and estimation of R0. Additionally, it was difficult to model the initial

part of COVID-19 spread using SIR models, compared to other models, since we had limited or no

information on aspects such as asymptomatic transmission, super-spreaders and unreported cases.

Moreover, constructing a long-term forecasting model is a major challenge because of the lack of data.

The SIR model has a tendency to underestimate peak infection rates and substantially overestimate

the persistence of the epidemic after the peak has passed (Pereira et al., 2022).

Intuitively, prediction accuracy can be increased by synthesizing the forecasts of many unique

models. This represents one important area of future research to improve the usefulness of compart-

mental models. Cramer et al. (2022) find that an ensemble model provides more accurate short-term

forecasts of hospital and ICU admissions compared to the individual models alone. The ensemble

model also has a lower prediction error and better calibration than the individual models, suggesting

it could be more effective in real-time decision-making for healthcare systems.

In this paper, we investigated predictive failures of the SIR framework and its derivative mod-

els. While our empirical analysis utilized forecasts from the model constructed at UT Austin, our

conclusions apply to all compartmental models generated from sets of differential equations. The

epidemiological community should scrutinize this framework and promote new and innovative tech-

niques that go beyond differential equations and adopt solutions from economics, statistics, machine

learning, and beyond. A pandemic forecasting model can always be marketed as unique, but if it

relies on differential equations and compartmental modeling, this structural bias will outweigh most

novel modifications. We hope this manuscript contributes to a rebirth of research in epidemiological

modeling so the best techniques can be elevated and utilized in future pandemics.
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