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Climate Change Policy Analysis

Question: What can and should be the policy response to rising CO2
concentrations?
We build a dynamic and stochastic integrated framework for models of
climate and the economy (DSICE)

◮ Economic risk

◮ uncertain economic growth with persistence in growth rates
◮ flexible preferences that represent risk aversion (Epstein–Zin)

◮ Climate risk

◮ damages interact with economic shocks
◮ climate events are stochastic; e.g., glaciers melting, THC collapse

◮ Model uncertainty

◮ We do not know what models for economy and climate are best
◮ We do not exactly know key parameters in any specific model



Climate Change Policy Analysis

Results

◮ 2020 SCC (Social Cost of Carbon) and optimal carbon tax are
generally higher when one includes uncertainty

◮ SCC is a stochastic process similar to a random walk
◮ Variance of SCC is increases substantially over time

◮ There is no single “discount rate” to use when valuing GHG policies

◮ Discounting should be based on consumption CAPM, stochastic
asset pricing kernel

◮ For damages proportion to output
◮ use consumption discount rate
◮ treat mitigation expenses like investment

◮ For damages due to tipping events
◮ use safe rate
◮ treat mitigation expenses like insurance

◮ It is possible to combine the best macro models with canonical
models of the climate



Why Should Other Economists be Interested?

◮ Economies are complex systems

◮ Networks of interacting economies are even more complex

◮ Economic modeling typically ignores this

◮ Economists analyze simple stylized models of pieces of economies
◮ Economists love tractable models requiring little math and low-level

computational tools (even Excel)
◮ Economists ignore uncertainty in our knowledge of key parameters

◮ My collaborators and I are trying to change that

◮ Create robust and general tools that can use state-of-the art
numerical methods on modern computer architectures

◮ Economists must recognize model uncertainty
◮ Climate change policy is the application; analysis of any other policy

can use the same tools.
◮ Many non-economists would like to participate in this effort
◮ We solve models that others have declared intractable



I: Current State of Integrated Assessment Modeling



IAMs are simple, unreliable

Economic models are from 30+ years ago

◮ Many have “myopic expectations”, no foresight

◮ Many have a single state variable

◮ None have economic and climate uncertainty, multiple sectors,
multiple countries, etc.

Climate science models use lastest algorithms and hardware; economists
use laptops
Economists’ numerical “methods” are flawed

◮ IWG 2010 report used a simple model to get estimate of SCC

◮ We showed that their SCC numbers were 20-40% too high because
of “time-traveling CO2” (Lesson: the code can be different from
equations in documents)

◮ One IAM did post their code; a friend of mine tried to run it and the
code failed to converge



My Views: See CIM-EARTH & RDCEP

◮ CIM-EARTH Framework (Community Integrated Model for Energy
and Resource Trajectories for Humankind)

◮ “An environment for economic modeling and simulation”
◮ Goal: “provide open source ... tools that incorporate the most

modern computational methods, to increase ... quality and
transparency of integrated assessment modeling”

◮ “Framework”, not just a single model
◮ Incorporate uncertainties and risks

◮ Funded by MacArthur Foundation

◮ The goals were

◮ Build modern computational tools for economic modelling
◮ Make it easy for economists to use them for their own models
◮ Analogy with past: economists use to write their own statistical

code, but then came TSP, RATS, etc.



Validation, Verification, and Uncertainty Quantification
(VVUQ)

◮ We do not know actual values of parameters

◮ Standard errors in estimation
◮ Disagreements over data, estimation procedures, models

◮ Applied physicists and engineers have the same problems

◮ US nuclear weapons stockpile stewardship
◮ Engineering design
◮ Motivation for supercomputing development

◮ VVUQ methods developed in engineering and applied physics areas

◮ Validation: Is the model true?
◮ Verification: Is the code solving the model?
◮ Uncertainty Quantification: How much do the results depend on

parameters?



II: The DSICE Framework

We build on Nordhaus DICE model
It is the most widely used model
A useful benchmark which allows us to determine how adding uncertainty
and risk affects results from well-known analyses



Dynamic Stochastic Integration of Climate and Economy



Climate System for Temperature and GHG – DICE

◮ Carbon concentration: M = (MAT,MUO,MLO)
⊤

Mt+1 = ΦMMt + (Et , 0, 0)
⊤

◮ Et : emissions from biological and economic activity
◮ ΦM : transition matrix of carbon cycle

◮ Temperature: T = (TAT,TOC)
⊤

Tt+1 = ΦTTt + (ξ1Ft (MAT,t) , 0)
⊤

◮ Ft : radiative forcing
◮ ΦT : transition matrix of temperature system



Climate Tipping State – Innovation of DSICE

◮ Climate Tipping State: Jt
◮ irreversible damage in output

◮ Examples of climate tipping elements

◮ West Antarctic ice sheet melting
◮ Greenland ice sheet melting
◮ collapse of Atlantic themohaline circulation

◮ Net-of-damage output factor: Ω (TAT,t , Jt)

Ω (TAT,t , Jt) =
1− Jt

1+ π1TAT,t + π2(TAT,t)2



Economic System – DICE plus LRR

◮ Production:
f (Kt , Lt , Ãt) = ÃtK

α
t L

1−α
t

◮ Kt : capital; Lt : world population
◮ At : deterministic trend
◮ ζt : productivity shock with long-run risk

log (ζt+1) = log (ζt) + χt + ̺ωζ,t

χt+1 = rχt + ςωχ,t

◮ Ãt : stochastic productivity, Ãt ≡ ζtAt

◮ Output:

Yt = Ω(TAT,t , Jt) f
(
Kt , Lt , Ãt

)



◮ Next-year capital with investment It :

Kt+1 = (1− δ)Kt + It

◮ Market clearing condition:

Yt = It + Ct +Ψt

◮ Ct : consumption
◮ Ψt : mitigation expenditure depending on output and emission

control rate µt



Carbon Emission and Abatement – DICE

◮ Emissions depend on nature, economic output, and emission control

Et = EInd,t + ELand,t

EInd,t = σt(1− µt)f
(
Kt , Lt , Ãt

)

◮ σt : carbon intensity of output at time t, representing technical
change

◮ µt : emission control at time t

◮ Cost of Mitigation
Ψt = θ1,tµ

θ2
t Yt

◮ θ1,t : efficiency of mitigation technology
◮ θ2: exceeds unity, representing convexity in cost



III: Economic Policy Evaluation



Epstein–Zin Preferences

Preferences: recursive utility function

Ut =

{
(1− β) u(Ct , Lt) + β

[
Et

{
U

1−γ
t+1

}] 1−1/ψ
1−γ

} 1

1−1/ψ

◮ ψ: inter-temporal elasticity of substitution (IES): desire for
consumption smoothing

◮ γ: risk aversion parameter

◮ u(Ct , Lt): annual world utility function

u(Ct , Lt) =
(Ct/Lt)

1−1/ψ

1− 1/ψ
Lt

DICE (and most work) assumes either γ = 1/ψ, or no uncertainty (in
which case, γ is irrelevant)



Bellman Equation

◮ Bellman equation for the dynamic stochastic problem:

Vt(S) = max
C ,µ

ut(C , Lt) + β

[
Et

{(
Vt+1

(
S
+
)) 1−γ

1−
1

ψ

}] 1−
1

ψ
1−γ

,

s.t. K+ = (1− δ)K + Yt − C −Ψt ,

M
+ = ΦMM + (Et , 0, 0)

⊤
,

T
+ = ΦTT + (ξ1Ft (MAT) , 0)

⊤
,

ζ+ = gζ(ζ, χ, ωζ),

χ+ = gχ(χ, ωχ),

J+ = gJ(J,T, ωJ)

◮ Nine-dimensional state vector: S = (K ,M,T, ζ, χ, J)

◮ Two control variables: C , µ

◮ 600-year horizon; annual time steps; terminal value function



Epstein-Zin Preference Parameters
We recognize the wide range of beliefs about IES and RA

IES RA
Bansal & Yaron (2004) 1.5 10

Bansal and Ochoa (2011) 1.5 10
Vissing-Jørgensen and Attanasio (2003) 1.23 [5, 17]

Barro (2009) 2 4
Pindyck and Wang (2013) 1.5 3.066

Constantinides Ghosh (2011) 1.41 9.43 (2.94)
Schorfheide et al. (2014) 1.6 10
Epstein et al. (2014) 1.5 7.5

Belleer and Campbell (2011) 1.5 10
Gruber (2013) 2 (0.8) 0.5

Jensen and Traeger (2014) 1.5 10

␣
Note: DSICE is constructed to handle any recursive preference
specification – robust optimization, habits, Campbell-Cochrane,
ambiguity – because it is written to solve difference equations in Banach
spaces



Calibration for stochastic productivity

◮ Choose productivity process so that the implied consumption process
matches empirical data on the moments of per-capita consumption
growth rates

Observed Data DSICE

Variable Estimate Median 5% 95%

E (gc) 0.019 0.013 0.002 0.025

σ(gc) 0.022 0.023 0.019 0.028

order-1 autocorrelation 0.48 0.43 0.19 0.64

order-2 autocorrelation 0.17 0.37 0.13 0.59

autoregression coef Λ 0.46 0.48 0.24 0.68

autoregression sd σ(ǫ) 0.0179 0.0203 0.0177 0.023



Computational Method

◮ DSICE:

◮ six-dimensional continuous state variables x ≡ (K ,M,T)
◮ three-dimensional discrete state variables θ ≡ (ζ, χ, J) with

91 × 19 × 16 time-dependent values

◮ Solve backwards in time

◮ A value function Vt(S) represents economic system at time t as a
function of S = (x, θ)

◮ Terminal condition: VT (S) known for time T
◮ Decisions today depend on expectations of what will be done

tomorrow
◮ Backward induction:

Vt = FtVt+1



Numerical Dynamic Programming

◮ Initialization.
◮ Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ mt} for every

t < T ,
◮ Choose a functional form for V̂ (x , θ; b), where θ ∈ Θt .
◮ Let V̂ (x , θ; bT ) ≡ VT (x , θ).

◮ For t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

◮ Step 1. Maximization step (in parallel). Compute

vi,j = max
a∈D(xi ,θj ,t)

ut(xi , a) + βHt

(
V̂
(
x+, θ+j ;bt+1

))

s.t. x+ = F (xi , θj , a),

θ+j = G (xi , θj , ω),

for each θj ∈ Θt , xi ∈ Xt , 1 ≤ i ≤ mt .

◮ Step 2. Fitting step. Using an appropriate approximation method,
compute the bt such that V̂ (x , θj ;bt) approximates (xi , vi,j) data for
each θj ∈ Θt .



Computational Challenges and Parallelization

◮ Computational Challenges

◮ 100:1 ratio in maximum to minimum capital stock over next 200
years

◮ substantial range in climate state variables
◮ value function is strongly nonlinear

◮ Size of computation

◮ Approximation: 1.5 billion approximation nodes
◮ Optimization: 372 billion optimization problems

◮ Massive Parallelization in DSICE

◮

Parallelization No Parallelization
Number of cores 84K 1
Running time 8 hours 77 years

◮ Speed can be improved by 10-100x



Verification of Results

Standard practice: Trust numerical results, don’t verify
We follow VVUQ: At each iteration, we compute approximation errors
with an “out of sample test”



IV: Results



Social Cost of Carbon–Productivity Risk

SCC is also the optimal carbon tax
Nordhaus model is upper left corner – 37
Adding LRR and using “more plausible” parameter values implies
substantially larger SCC
Our results don’t just “add noise” to DICE results

ψ
Deterministic γ

Growth Case 2 6 10 20

0.5 37 39 52 61 69

0.75 54 55 58 60 62

1.25 82 77 65 61 56

1.5 94 85 68 61 55

2.0 111 97 71 62 54

Table: 2010 social cost of carbon ($ per ton of carbon) under stochastic growth



Discount Rate for Damages

◮ Discount rate,ρ, of marginal expected damages, dSSC0, per marginal
unit of emission, dDt , is defined by:

dSCC0 =

T∑

t=0

(1+ ρ)−tdDt

◮ Damages from risky climate events should be discounted less than
damages from damages proportional to output

◮ Paying carbon tax to prevent tipping is like paying insurance

◮ Consumption CAPM

◮ Conclusion: There is no one discount rate

◮ Future work: incorporate multiple sectors with differing income
elasticity of demand and compute sector-specific discounting of
sector-specific damages

Damages: Tipping (DSICE) Output (DICE)
Discount rate: 0.5% 3.8%



Uncertainty Quantification



Uncertainty Quantification versus Economics

◮ Dominant methodology in economics is

◮ examine empirical literature
◮ choose the “best” value for each parameter
◮ solve model for that case only
◮ ignore parameter sensitivity

◮ Most journals accept this; some demand this



How much do we know?

◮ Pindyck: “[IAMs] create a perception of knowledge ... that is
illusory”

◮ I agree; in fact, this is true of most economic analyses

◮ My response: use Uncertainty Quantification

◮ Specify range of plausible values for a parameter
◮ Display how results differ across parameter values
◮ Display how parameters interact in producing results



Damage and Growth Uncertainty

◮ We do not know the mean growth rate Λ: let

◮ People have different opinions on damage as function of temperature



Four-D Uncertainty Quantification with Macro Risk

◮ Four parameters: damage, mean growth rate, utility discount rate,
climate sensitivity



Lessons from our 4D UQ

Damage function and trend growth rate don’t matter much
Climate sensitivity is important – a task for climate modelers
Utility discount rate is important– a task for economists

◮ Nordhaus approach is internally coherent – planner uses actors’
discount rates

◮ Stern approach is internally incoherent – the planner uses a low
discount rate

◮ BUT ignores the actors discount rates (or, assuming that moral
suasion will change it)

◮ If Stern recognized difference in planner and actors’ discounting, he
would get different results

◮ high discounters save less, implying less output and emissions in the

future
◮ if planner wants to impose low discounting on everything, then he

would have to subsidize capital formation



Bayesian learning about climate sensitivity

Climate sensitivity is uncertain, but of critical importance
Policy should incorporate uncertainty about climate sensitivity
First papers on Bayesian made nonsense assumptions that an uncertain
parameter could be expressed as being drawn from a Gaussian random
variable – physics tells us that the support is not infinite
We have incorporated this into DSICE in a manner which allowed us to
use basic Kalman filtering but kept all random variables bounded.
Preliminary results say that current SCC is not much affected.



Scenarios

IPCC presents consensus scenarios for emissions and temperature impacts
RCP8.5 represents the “Business as usual” scenario – that is, little if any
policy intervention
IPCC models ignore uncertainty in economic growth
DSICE reexamines the scenarios but adding LRR



Scenarios: DSICE vs. RCP8.5



Two-Degree Target

Many argue for a two-degree target
Researchers use models like DICE
Uncertainty ignored
DSICE computes two-degree target policies when policymakers recognize
economic fluctuations



Temperature and no target



Temperature and 82% successful target



Temperature and 100% successful target



Conclusions: IAMs (and economics!) can be far more
realistic

DSICE shows that

◮ It is possible to add both climate and economic risk to climate
change policy and impact analyses

◮ It is possible to add sector and/or international disaggregation

◮ It is possible to incorporate economic uncertainty into dynamic
scoring of tax proposals

Changes are necessary to implement the potential

◮ Economists need to think about leaving their laptops, Excel, Matlab,
EViews, and other second millenium tools

◮ Economists need to collaborate with computational scientists – like
everyone else is!


